Quantum Engineering

Executing Microsoft Quantum Topological Dataset Notebooks

Microsoft recently released its Topological Quantum Computing dataset for anyone to try out. This post describes how to do so.

As shown in this article, you can create an Azure Quantum Workspace and within its Notebooks tab, visit the available notebooks under Topological Quantum Computing.

There are three notebooks available to review:

  • Analysis of device data from preprint paper
  • First stage of topological gap protocol
  • Second stage of topological gap protocol

To view and run a notebook:

  1. In your new workspace, select Notebooks and then select Topological quantum computing.
  2. Select your desired notebook, and select Copy to my notebooks.Copy sample notebook.

Once you open your Azure Quantum Workspace, Select Topological Quantum Computing. Copy each into your notebooks, which is the third item among your listed Jupyter Notebooks.

Opening each starts a new Jupyter Server instance within your Azure Quantum Workspace. Study it, then click run all.

Each notebook should execute within a few minutes and populate the cells with results – data or graphics.

In case you want to see the outputs you can read this paper which contains all the graphics that are generated using these three notebooks. Below is a Zipfile containing execution results from Pivotport Quantum Workspace if you wish to examine them in your own Jupyter Server.

Quantum Engineering

Chapter in “Quantum Computer Music” published by Springer

Rajiv Mistry and Jonathan Ortega of Pivotport, Inc. were invited by Eduardo Miranda, editor of the book “Quantum Computer Music” to author a chapter titled “Experiments in Quantum Frequency Detection using the Quantum Fourier Transform” after they presented the topic at the first International Symposium for Quantum Computing in Musical Creativity, hosted by University of Plymouth in late 2021.

The book is published by Springer and available!

Quantum Engineering

Elevator Pitch: Pivotport Inc.

Excerpts from “Quantum Computing in Healthcare in Life Sciences” Webinar by Nardo Manaloto

What is Quantum Engineering, Computing, Detection, Sensing & Noise?
Explanation of Quantum Engineering, Computing, Detection, Sensing, Noise by Rajiv Mistry @ 1:47:15

Pivotport Elevator Pitch
Pivotport Elevator Pitch by Rajiv Mistry @1:50:59

Quantum Engineering

Pivotport granted $10K in Azure Quantum Credits for Rigetti Provider

Microsoft Azure Quantum Credits for $10K for Rigetti Provider were granted to Pivotport, Inc. to continue its development of the Quantum Cardiac Detector and Identifier project through simulator and QPU use.

Quantum Engineering

Pivotport granted $10K in Azure Quantum Credits for IonQ Aria

Microsoft Azure Quantum Group has granted use of $10K worth of Azure Quantum Credits for Aria, the IonQ Quantum Computer available on Azure as of today.

This is in addition to the prior grant of a similar amount of credits for Harmony by IonQ during September 2021.

We will continue to pilot the Quantum Cardiac Detector software using these credits towards QPU driven processing of ECG signals.

Quantum Engineering

Pivotport granted $10K in Azure Quantum Credits for Quantinuum Provider

Microsoft Azure Quantum Credits for $10K for Quantinuum Provider were granted to Pivotport, Inc. to continue its development of the Quantum Cardiac Detector and Identifier project through simulator and QPU use.

Updates on this work will be posted in this post in the future.

Quantum Engineering

Pivotport, Inc. selected to join Microsoft for Startups Founders Hub.

Pivotport, Inc. is excited to announce that it is a proud Microsoft for Startups Founders Hub Partner.

Due to this partnership, Pivotport, Inc. will be receiving much needed support to advance its Quantum Cardiac Detector and Identifier project starting from the Ideate stage and advancing along Develop, Grow and Scale stages.

The program offers many benefits, including upto $150000 worth of Azure Credits, Microsoft 365 credits, Dynamics 365 credits as well as Visual Studio Enterprise credits along with many additional third party partner benefits such as Github for Enterprise, OpenAI, Drata, and Ansarada.

Quantum Engineering

Pivotport, Inc. joins QED-C

Pivotport, Inc. has joined The Quantum Economic Development Consortium. We look forward to engaging with the Technology Adoption Committees and working with industry and academia to help advance our Quantum workforce through mentoring and internships in advanced Quantum Engineering engagements.

More information on QED-C is found here.

Quantum Engineering

Pivotport, Inc selected for Azure Quantum Private Preview for IonQ

Project Name: Quantum detection of cardiovascular events in cardiac signals

Credits Granted to Pivotport, Inc. by Microsoft Azure Quantum Program:

$10000 USD worth usage of Azure Quantum Service for the IonQ QPU provider. Unlimited usage for the IonQ Simulator.

The above credits will be made available to Pivotport, Inc. starting on October 1, 2021, and expiring on June 30, 2022.

Pivotport, Inc. is currently in the planning phase to conduct this project on Quantum Computing platforms such as IonQ (preview available via Azure Quantum) available via Microsoft Azure.

Update: February 27, 2022: Pivotport has completed execution of its quantum frequency detector on Azure Quantum via the IonQ provider using IonQ Simulator as well as IonQ QPU in preparation for the upcoming trials for cardiac waveforms. A total of 60 million gate shots were applied on a test QFT circuit to ingest and process signals on the IonQ hardware this morning with results to be published soon.

Update: March 17, 2022:

Left: First successful simulation execution to detect a Quantum Cardiac Anomaly.
Right: Classical computing based image to detect a Cardiac Anomaly.

We are racing to complete the Quantum code and execute it on IonQ via Azure Quantum by end of March. We plan to publish results during April.

Update: April 11, 2022:

We have used publicly available cardiovascular ECG datasets to develop the below Quantum Spectrograms which depict different cardiac events using a frequency and time based spectrum. These have been obtained as output from IonQ Simulator executions run in Jupyter Notebook that calls the IonQ provider from an Azure Quantum Workspace.

We are now awaiting the availability of IonQ’s latest device, Aria on Pivotport’s Microsoft Azure Quantum Workspace to execute the Quantum code on its Quantum Processing Unit (QPU).

We will determine the time to compute on Aria and compare each run with Classical Computing executions of the same outputs. The goal is to understand if there is a significant speed advantage in using Quantum Computing to detect ECG anomalies as a potential application in the cardiac ward of a hospital.

The dataset we used had only seven ECG that were continuous, and we have executed anomaly detection Quantum Spectrograms on six of these shown below.

Ventricular Tachycardia: Each ECG was 8 minutes long.

Update April 30, 2022:
We have started conducting further refinements to improve resolution of the Quantum Spectrograms using a total of 16513 IonQ Simulator jobs since late March till early May in preparation for the QPU based execution of the same record set to commence soon. In the first dataset, we used Ventricular Tachycardia ECG signals. A second data set of ECG signals for Ventricular Ectopy has also been processed to generate the below images of the frequency spectrum across the entire captured signal for each image.

Ventricular Ectopy: Each ECG was 35 minutes long.

We conducted very successful simulations using the IonQ Simulator provider via the Pivotport Quantum Workspace over the last weekend of April.

The first set of ECGs we had used in the prior simulation were for Ventricular Tachycardia, with 8 minutes duration for each of 7 continuous ECGs. 

The second set of ECGs we used in the latest simulation were for Ventricular Ectopy, with 35 minutes duration for each of 22 continuous ECGs. 

Both types of ventricular cardiac anomalies may occur in Covid-19 recovered patients and can indicate cardiac tissue damage and elevated risk of cardiac disease, among many other causes. Due to the large recovered patient base, high speed processing could allow faster decision support for diagnosis, so Quantum Advantage could be very important in the solution for this problem.

Due to four times longer duration, the second dataset took a lot more jobs to execute. Approximately four times as many as the first dataset, to generate the Quantum Spectrograms. 

We plan to calculate the number of Tachycardia and Ectopy ECGs possible to process their Quantum Spectrograms using QPU execution with the Azure Credits we have, for a total not exceeding 333M gate shots. 

We will get important learnings from this:

1) Duration to simulate compared to duration to execute on QPU for Quantum Spectrograms. This may demonstrate quantum advantage for such detection. 

2) Qualitative comparison of Phase 1 (Detection) Quantum Spectrograms between simulated and QPU execution. This may determine if there is noise in the QPU based results thus giving us insights into the speed versus quality tradeoff between simulation and QPU calculations, which in turn will drive the Phase 2 (Identification) QML based certainty for simulated versus QPU results.

We used a total of over 16000 jobs to simulate the results so far. The initial test simulations for the first 1000 jobs were to debug our code. The next 3000 jobs were for the first dataset for Tachycardia. The remaining 12000 jobs were for the second dataset for Ectopy.

Quantum Engineering

Pivotport, Inc. presented at the ISQCMC

Pivotport, Inc. CEO Rajiv Mistry and his Purdue University classmate, Jonathan Ortega presented at the first International Symposium for Quantum Computing in Musical Creativity , hosted online by University of Plymouth (UK) on 11/19-20/2021.

The topic covered discussion of the strategy, approach and results of a Quantum Algorithms and Software project titled:
Quantum Frequency Detector for Audio Files

This is based on the project completed by Rajiv Mistry, Jonathan Ortega and John Kye during their coursework at Purdue towards their Micromasters in Quantum Technology: Detectors and Networking during Q1-Q2 of 2021.

The below results files in PDF format are available for session attendees:

Simulated Results for Quantum Frequency detector

Real Device Results for Quantum Frequency Detector

Example Jupyter Notebooks for QISKIT and CIRQ

Example QFT Circuit – click to view animation.